Sites Grátis no Comunidades.net
referencias

1. Pfiffner, O.A., 2006. Thick-skinned and thin-skinned styles of continental contraction. Geol. Soc. Am. Spec. Pap.
2006, 414, 157-177.
2. Chamberlin, R.T. The building of the Colorado Rockies. The J. of Geol. 1919, 27/3, 145-164.
3. Chamberlin, R.T. Vulcanism and mountain-making: a supplementary note. The J. of Geol. 1921, 29/3, 166-172.
4. Rodgers, J. Evolution of thought on structure of middle and southern Appalachians. AAPG Bull. 1949, 33,
1643-1654.
5. Gwinn, V.E. Thin-Skinned Tectonics in the Plateau and Northwestern Valley and Ridge Provinces of the
Central Appalachians. Geol. Soc. Am. Bull. 1964, 75, 863-900.
6. Argand, E. Sur l’arc des Alpes Ocidentales. Ecl. Geol. Helv. 1928, XIV, 145-190.
7. Heim, Alb. Geologie der Schweiz, I, II/1, II/2. Tauchnitz: Leipzig, Germany, 1919-1922.
8. Elliott, D.; Johnson, M.R.W. Structural evolution in the northern part of the Moine thrust belt, NW Scotland.
Edinburgh Geol. Soc. Trans., Earth Sci. 1980, 71, 69-96.
9. Gansser, A. Geology of the Bhutan Himalaya. Denkschr. Schweiz. Naturforsch. Ges. 1983, 96, 181 pp. Birkhäuser,
Basel.
10. Mégard, F. The Andean orogenic period and its major structures in central and northern Peru. J. Geol. Soc. 1984,
141, 893-900, doi: 10.1144/gsjgs.141.5.0893.
11. Rubey, W.W.; Hubbert, M.K. Part 2 of Role of fluid pressure in mechanics of overthrust faulting. 2. Overthrust
belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis. Geol. Soc. Am. Bull. 1959, 70,
167-206.
12. Armstrong, F.C.; Oriel, S.S. Tectonic development of Idaho-Wyoming thrust belt. Bull. AAPG 1965, 49,
1847-1866.
13. Bally, A.W.; Gordy, P.L.; Stewart, G.A. Structure, Seismic Data, and Orogenic Evolution of Southern Canadian
Rocky Mountains. Bull. Can. Petrol. Geol. 1966, 14/3, 337-381.
14. Crittenden, M.D., Jr.. Willard thrust and the Cache allochthon, Utah. Geol. Soc. Am. Bull. 1972, 83, 2871-2880.
15. Royse, F. Jr., 1993. An overview of the geologic structure of the thrust belt in Wyoming, northern Utah, and
eastern Idaho. In Geology of Wyoming. Snoke, A.W.; Steidtmann, J.R.; Robert, S.M.; Eds. Geol. Surv. Wyoming
Mem. 1993, 5, 272-311.
16. Teyssier, C. A crustal thrust system in an intracratonic environment. Tectonophysics 1985, 7/6, 689-700.
17. Escher, Arnold. Geologische Carte des Cantons Glarus und seiner Umgebung, nebst Profilen. Verhandl.
Naturforsch. Ges. Zürich 1841, 52–62.
18. Rogers, W.B.; Rogers, H.D. On the physical structure of the Appalachian Chain, as exemplifying the laws
which regulated the elevation of great mountain chains generally. Assoc. Am. Geol. and Nat. Reprints
(Transactions) 1843, pp. 4474-531, (reprinted in Rogers, W.B., 1884, The geology of the Virginias, New York).
19. Callaway, C. The age of the newer gneissic rocks of the northern Highlands. Quart. J. Geol. Soc. London 1883, 39,
355-422.
20. Lapworth, C. On the structure and metamorphism of the rocks of the Durness-Eriboll district. Proceedings of the
Geologists' Association 1883/1884, 8, 438-442.
21 Törnebohm, A.E. Om Fjallproblemet. Geologiska Föreningen i Stockholm Förhandlingar 1888, 10, 328-336.
22. Merle, O. Emplacement Mechanisms of Nappes and Thrust Sheets. Kluwer Academic Publishers: Dordrecht,
Boston, London, 1998.
23. Hubbert, M.K.; Rubey, W.W. Role of fluid pressure in mechanics of overthrust faulting. 1. Mechanics of
fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 1959, 70, 115-166.
24. Smolukowsky, M.S. Some remarks on the mechanics of overthrust. Geol. Mag. 1909, 6, 203-205.
25. Kehle, R.O. Analysis of gravity sliding and orogenic translation. Geol. Soc. Am. Bull. 1970, 81, 1641-1664.
26. Hatcher, R.D., Jr. Tectonic synthesis of the U.S. Appalachians. In The Geology of North America: The
Appalachian-Ouachita orogen in the United States, Hatcher, R.D.; Thomas, W.A.; Viele, G.W.; Eds., vol. F-2, Geol.
Soc. Am., Boulder, U.S.A., 1989, pp. 511-535.
27. Pfiffner, O.A. The structure of the Helvetic nappes and its relation to the mechanical stratigraphy. J. Struct. Geol.
1993, 15/3-5, 511-521.
28. Thomas, W.A. Stratigraphic framework of the geometry of the basal décollement of the Appalachian-Ouachita
fold-thrust belt. Geol. Rndsch. 1988, 77, 183-190.
29. Price, R. The mechanical paradox of large overthrusts. Geol. Soc. Am. Bull. 1988, 100, 1898-1908.
30. Washington, P.; Price, R. The mechanical paradox of large overthrusts; alternative interpretation and reply.
Geol. Soc. Am. Bull. 1990, 102, 529-532.
31. Regenauer-Lieb, K.; Yuen, D.A. Modeling shear zones in geological and planetary sciences: solid- and
fluid-thermal mechanical approaches. Earth Sci. Rev. 2003, 63, 295-349, doi:10.1016/S0012-8252(03)00038-2
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
32. Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: a ‘natural laboratory for
crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24,
1861-1884.
33. Ebert, A.; Herwegh, M.; Pfiffner, A. Cooling induced strain localization in carbonate mylonites within a
large-scale shear zone (Glarus thrust, Switzerland). J. Struct. Geol. 2007, 29, 1164-1184.
34. Duretz, T.; Schmalholz, S.M.; Podladchikov, Y.Y. Shear heating-induced strain localization across the scales.
Phil. Mag. 2015, doi: 10.1080/14786435.2015.1054327.
35. O’Hara, K. Reaction weakening and emplacement of crystalline thrusts: Diffusion control on reaction rate and
strain rate. J. Struct. Geol. 2007, 29, 1301-1314.
36. Jefferies, S.P.; Holdsworth, R.E.; Wibberley, C.A.J.; Shimamoto, T.; Spiers, C.J.; Niemeijer, A.R.; Lloyd, G.E.
The nature and importance of phyllonite development in crustal-scale fault cores: an example from the
Median Tectonic Line, Japan. J. Struct. Geol. 2006, 28, 220-235.
37. Gueydan, F., Précigout, J. & Montési, L.G.J. Strain weakening enables continental plate tectonics.
Tectonophysics 2014, 631, 189-196, http://dx.doi.org/10.1016/j.tecto.2014.02.005
38. Bellahsen N.; Jolivet L.; Lacombe O.; Bellanger M.; Boutoux A.; Garcia S.; Mouthereau F.; Le Pourhiet L.;
Gumiaux C. Mechanisms of margin inversion in the external Western Alps: implications for crustal rheology.
Tectonophysics 2012, 560-561, 62-83, doi:10.1016/j.tecto.2012.06.022
39. Lacombe, O.; Bellahsen, N. Thick-skinned tectonics and basement-involved fold-thrust belts: insight from
selected Cenozoic orogens. Geol. Mag. 2016, 153, 763-810, doi:10.1017/S0016756816000078.
40. Wojtal, S.; Mitra, G. Nature of deformation of some fault rocks from Appalachian thrusts. Geol. Soc. Am. Spec.
Pap. 1988, 222, 17- 34.
41. Pfiffner, O.A. Displacements along thrust faults. Ecl. Geol. Helv. 1985, 78, 313-333.
42. Fossen, H. Structural geology. Cambridge University Press, Cambridge, UK, 2010; ISBN 978-0-521-51664-8.
43. Passchier, C.W.; Trouw, R.A.J. Microtectonics. Springer-Verlag, Berlin, Germany, 1996; ISBN 3540587136.
44. Selzer, C.; Buiter, S.J.H.; Pfiffner, O.A., 2008. Numerical modeling of frontal and basal accretion at collisional
margins. Tectonics 2008, 27, TC3001, doi:10.1029/2007TC002169.
45. Konstaninovskaya, E.A.; Malavieille, J. Erosion and exhumation in accretionary orogens: Experimental and
geological approaches. Geochem., Geoph., Geosyst. 2005, 6/2, doi:10.1029/2004GC000794.
46. Wissing, S.B.; Pfiffner, O.A. Numerical models for the control of inherited basin geometries on structures and
emplacement of the Klippen nappe (Swiss Prealps). J. Struct. Geol. 2003, 25, 1213-1227.
47. Gilchrist, R.; Coward, M.; Mugnier, J.-L. Structural inversion and its control: examples from the Alpine
foreland and the French Alps. Geodinamica Acta 1987, 1, 1, 5-34.
48. Argand, E. Les nappes de recouvrement des Alpes Pennines et leurs prolongements structuraux. Matériaux
Carte géologique Suisse 1911, nouvelle série 31.
49. Konstantinovskaya, E.A.; Harris, L.B.; Poulin, J.; Ivanov, G.M. Transfer zones and fault reactivation in inverted
rift basins: Insights from physical modeling. Tectonophysics 2007, 441, 1-26, doi: 10.1016/j.tecto.2007.06.002.
50. Ramos, V.A.; Cristallini, E.O.; Pérez, D.J. The Pampean flat-slab of the Central Andes. J. South Am. Earth Sci.
2002, 15, 59-78.
51. Scheiber, Th.; Pfiffner, O.A.; Schreurs, G. Strain accumulation during basal accretion in continental collision –
A case study from the Suretta nappe (eastern Swiss Alps). Tectonophysics 2012, 579, 56-73, doi:
10.1016/j.tecto.2012.03.009.
52. Elliott, D. The Motion of Thrust Sheets. J. Geophys. Res. 1976, 81/5, 949-963
53. Ramberg, H. The role of gravity in orogenic belts. Geol. Soc. London Spec. Publ. 1981, 9, 125-140.
54. Davis, D.M.; Suppe, J.; Dahlen, F.A. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys.
Res. 1983, 88, 1153-1172.
55. Dahlen, F.A.; Suppe, J.; Davis, D.M. Mechanics of fold-and-thrust belts and accretionary wedges (continued):
Cohesive Coulomb theory. J. Geophys. Res 1984, 89, 10087-10101.
56. Ramberg, H. Gravity, deformation of the Earth’s crust in theory, experiments and geological application, 2nd ed.;
Academic Press: London, UK, 1981.
57. Chemenda, A.I.; Mattauer, M.; Malavieille, J.; Bokun, A.N. A mechanism for syn-collisional rock exhumation
and associated normal faulting: Results from physical modeling. EPSL 1995, 132, 225-232.
58. Hilley, G.E.; Strecker, M.R.; Ramos, V.A. Growth and erosion of fold-and-thrust belts with an application to
the Aconcagua fold-and-thrust belt, Argentina. J. Geophys. Res. 2004, 109, B011410, doi:10.1029/2002JB002282.
59. Mugnier, J.-L.; Baby, P.; Colletta, B.; Vinour, P.; Bale, P.; Leturmy, P. Thrust geometry controlled by erosion
and sedimentation: A view from analogue models. Geology 1997, 25, 427-430,
doi:10.1130/0091-7613(1997)025<0427.
60. Willett, S.D. Orography and orogeny. The effects of erosion on the structure of mountain belts. J. Geophys. Res.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
1999, 104, 28957-28981.
61. Pfiffner, O.A.; Ellis, S.; Beaumont, C. Collision tectonics in the Swiss Alps: Insight from geodynamic modeling.
Tectonics 2000, 19, 1065-1094.
62. Selzer, C.; Buiter, S.J.H.; Pfiffner, O.A. Sensitivity of shear zones in orogenic wedges to surface processes and
strain softening. Tectonophysics 2007, 437, 51-70, doi:10.1016/j.tecto.2007.02.020.
63. Malavieille, J. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of
orogenic wedges: Analog models and case studies. GSA Today 2010, 20/1, 4-10, doi: 10.1130/GSATG48A.1
64. Avouac, J.-P. ; Burov, E.B., 1996. Erosion as driving mechanism of intracontinental mountain growth. J. Geophys.
Res. 1996, 101/B8, 17’747-17’769.
65. Schelling, D. The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 1992, 11, 925-943.
66. Cattin, R.; Avouac, J.-P. Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J.
Geophys. Res. 2000, 105/B6, 13’389-13’407.
67. DeCelles, P.G.; Robinson, D.M.; Quade, J.; Ojha, T.P.; Garzione, C.N.; Copeland, P.; Upreti, B.N. Stratigraphy,
structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 2001, 20,
487-509.
68. Avouac, J.-P. 2015, Mountain Building: from Earthquakes to Geologic Deformation. In: Treatise on Geophysics,
2nd edition, G. Schubert, 2015, Vol. 6, pp. 382-432.
69. Yin, A. Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along-strike variation of
structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1-131,
doi:10.1016/j.earscirev.2005.05.004.
70. Kohn, M.J. Himalayan Metamorphism and Its Tectonic Implications. Ann. Rev. EARTH PLANET. SCI. LETT.
2014, 42, 381-419, doi: 10.1146/annurev-earth-060313-055005.
71. Searle, M.P.; Simpson, R.L.; Law, R.D.; Parrish, R.R.; Waters, D.J. The structural geometry, metamorphic and
magmatic evolution of the Everest massif, High Himalaya of Nepal – South Tibet. J. Geol. Soc. London 2003, 160,
3345-366.
72. Wang, J.-M.; Zhang, J.-J.; Liu, K.; Zhang, B.; Wang, X.-X.; Rai, SM.; Scheltens, M. Spatial and temporal
evolution of tectonometamorphic discontinuities in the central Himalaya: Constraints from P-T paths and
geochronology. Tectonophysics 2016, 679, 41-60, http://dx.doi.org/10.1016/j.tecto.2016.04.035.
73. Catlos, E.J.; Harrison, T.M.; Kohn, M.J.; Grove, M.; Ryerson, F.J.; Manning C.E.; Upreti, B.N. Geochronologic
and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J.
Geop. Res. 2001, 106/B8, 16177-16204.
74. Bollinger, L.; Henry, P.; Avouac, J.P. 2006. Mountain building in the Nepal Himalaya: Thermal and kinematic
model. EARTH PLANET. SCI. LETT.. 2006, April 2006, DOI: 10.1016/j.epsl.2006.01.045.
75. Bollinger, L.; Avouac, J.P.; Beyssac, O.; Catlos, E.J.; Harrison, T.M.; Grove, M.; Goffé, B.; Sapkota, S. Thermal
structure and exhumation history of the lesser Himalaya in central Nepal. Tectonics 2004, 23, TC5015,
doi:10.1029/2003TC001564.
76. Le Fort, P. Himalayas: the collided range; Present knowledge of the continental arc. Am. J. Sci. 1975, 275-A, 1-44.
77. Schelling, D.; Arita, K. Thrust tectonics, crustal structure, and the structure of the far-eastern Nepal Himalaya.
Tectonics 1991, 10, 851-862.
78. Elliott, J.R.; Jolivet, R.; González, P.J.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.P.; Stevens, V.L. Himalayan
megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geosci. 2016, 9,
174-180, DOI: 10.1038/NGEO2623.
79. Lee, J.; Hacker, B.R.; Dinklage, W.; Wang, Y.; Gans, Ph.; Calvert, A.; Wan, J.L.; Chen, W.; Blythe, A.E.;
McClelland, W. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic and thermochronologic
constraints. Tectonics 2000, 19, 872-895.
80. Zhang, J.; Santosh, M.; Wang, X.; Guo, L.; Yang, X.; Zhang, B. Tectonics of the northern Himalaya since the
India-Asia collision. Gondwana Res. 2012, 21, 939-960, doi:10.1016/j.gr.2011.11.004.
81. Hauck, M.L.; Nelson, K.D.; Brown, L.D.; Zhao, W.; Ross, A.R. Crustal structure of the Himalayan orogen at
~90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 1998, 17, 481-500.
82. Searle, M.P.; Szulc, A.G. Channel flow and ductile extrusion of the high Himalayan slab – the
Kanchenjunga-Darjeeling profile, Sikkim Himalaya. J. Asian Earth Sci. 2005, 25, 173-185,
doi:10.1016/j.jseaes.2004.03.004.
83. DeCelles, P.G.; Robinson, D.M.; Zandt, G. Implications of shortening in the Himalayan fold-thrust belt for
uplift of the Tibetan Plateau. Tectonics 2002, 21/6, 1062, doi:10.1029/2001TC001322, 2002.
84. Dahlen, F.A. Critical taper model of fold-and-thrust belts and accretionary wedges. Ann. Rev. Earth Planet. Sci.
1990, 18, 55-90.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
85. Mohajjel, M., Fergusson, C.L. & Sahandi, M.R. Cretaceous-Tertiary convergence and continental collision,
Sandandaj-Sirjan Zone, western Iran. J. Asian Earth Sci. 2003, 21, 397-412.
86. Vergés, J., Saura, E., Casciello, E., Fernàndez, M., Villaseñor, A., Jiménez-Munt, I.; García-Castellanos, D.
Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction.
Geol. Mag. 2011, 148, 739-761, doi:10.1017/S0016756811000331.
87. Agard, P.; Omrani, J.; Jolivet, L.; Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints
from collisional and earlier deformation. Int. J. Earth Sci (Geol. Rundsch.) 2005,94, 401-419, doi:
10.1007/s00531-005-0481-4.
88. Mouthereau, F.; Lacombe, O.; Vergés, J. Building the Zagros collisional orogeny: Timing, strain distribution
and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 2012, 532-535, 27-60,
doi:10.1016/j.tecto.2012.01.022.
89. Golongka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic.
Tectonophysics 2004, 381, 235-273, doi:10.1016/j.tecto.2002.06.004.
90. Davoudian, A.R.; Genser, J.; Dachs, E.; Shabanian, N. Petrology of eclogites from north of Shahrekord,
Sananaj-Sirjan zone, Iran. Min. and Petrol. 2008, 92, 393-413, DOI 10.1007/s00710-007-0204-6.
91. Izadyar, J.; Mousavizadeh, M.; Eram, M. Metamorphic evolution of high-pressure Quartz Schists in the
Chadegan metamorphic complex, Sanandaj-Sirjan zone, Iran. J. Geope 2013, 3/2, 1-20.
92. Mouthereau, F.; Tensi, J.; Bellahsen, N.; Lacombe, O.; De Boisgrollier, T.; Kargar, S. Tertiary sequence of
deformation in a thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars, Iran). Tectonics 2007,
26, TC5006, doi:10.1029/2007TC002098.
93. Molinaro, M.; Leturmy, P.; Guezou, J.-C.; Frizon de Lamotte, D.; Ehraghi, D. The structure and kinematics of
the southeastern Zagros fold-thrust belt, Iran: From thin-skinned to thick-skinned tectonics. Tectonics 2005, 24,
TC3007, doi:10.1029/2004TC001633.
94. Ahmadhadi, F.; Lacombe, O.; Daniel, J.-M. Early Reactivation of Basement Faults in Central Zagros (SW Iran):
Evidence from Pre-folding Fracture Populations in Asmari Formation and Lower Tertiary Paleogeography. In
Frontiers in Earth Sciences, January 2007, Chapter 11, doi: 10.1007/978-3-540-69426-7_11.
95. McQuarrie, N., Stock, J.M.; Verdel, C.; Wernicke, B.P. Cenozoic evolution of Neotethys and implications for the
causes of plate motions. Tectonics 2003, 30, 2036, doi:10.1029/2003GL017992.
96. Paul, A.; Kaviani, A.; Hatzfeld, D.; Vergne, J.; Mokhtari, M. Seismological evidence for crustal-scale thrusting
in the Zagros mountain belt (Iran). Geoph. J. Internat. 2006, 166, 227-237, doi: 10.1111/j.1365-246X.2006.02920.x.
97. Haghipour, A. & Aghanabati, A. (compilers) Geologic Map of Iran. Ministry of Mines and Metals, Geological
Survey of Iran: Teheran, Iran. 1985.
98. Khodabakhshnezhad, A.; Arian, M. Salt Tectonics in Southern Iran. Int. J. Geosci. 2016, 7, 367-377,
http://dx.doi.org/10.4236/ijg.2016.73029.
99. Simmons, N.A.; Myers, S.C.; Johannesson, G. Global-scale P wave tomography optimized for prediction of
teleseismic and regional travel times for Middle East events: 2. Tomographic inversion. J. Geophys. Res. 2011,
116, B04305, doi: 10.1029/2010JB007969.
100. Mouthereau, F.; Lacombe, O.; Meyer, B. The Zagros folded belt (Fars, Iran): constraints from topography and
critical wedge modeling. Geoph. J. Int. 2006, 165, 336-356, doi: 10.1111/j.1365-246X.2006.02855.x.
101. Talebian, M.; Jackson, J. A reappraisal of earthquake focal mechanisms and active shoete4ning in the Zagros
mountains of Iran. Geophys. J. Int. 2004, 156, 506-526, doi:10.111/j.1365-246X.2004.02092.x.
102. Nissen, E.; Tatar, M.; Jackson, J.A.; Allen, M.B. New views on earthquake faulting in the Zagros
fold-and-thrust belt of Iran. Geophys. J. Int. 2011, 186, 928-944; doi: 10.1111/j.1365-246X.2011.5119.x.
103. Allen, M.B.; Saville, C.; Blanc, E.J.-P.; Taleban, M.; Nissen, E. Orogenic plateau growth: Expansion of the
Turkish-Iranian Plateau across the Zagros fold-and-thrust belt. Tectonics 2013, 32, 171-190,
doi:10.1002/tect.20025
104. Oveisi, B., Lavé, J., van der Beek, P., Carcaillet, J., Benedetti, L. & Aubourg, C. Thick- and thin-skinned
deformation rates in he central Zagros simple folded zone (Iran) indicated by displacement of geomorphic
surfaces. Geoph. J. Intern. 2009, 176, 627-654, doi: 10.1111/j.1365-246X.2008.04002.x.
105. Van Avendonk, H.J.A.; Kuo-Chen, H.; McIntosh, K.D.; Lavier, L.L.; Okaya, D.A.; Wu, F.T.; Wang, C.Y.; Lee,
C.S.; Liu, C.S. Deep crustal structure of an arc-continent collision: Constraints from seismic travel times in
central Taiwan and the Philippine Sea. J. Geophys. Res. 2014, 119/Solid Earth, 8397-8416,
doi:10.1002/2014JB011327.
106. Ustaszewski, K.; Wu, Y.-M.; Suppe, J.; Huang, H.-H.; Chang, Ch.-H.; Carena, S. Crust-mantle boundaries in
the Taiwan-Luzon arc-continent collision system determined from local earthquake tomography and 1D
models: Implications for the mode of subduction polarity reversal. Tectonophysics 2012, 578, 31-49,
doi:10.1016/j.tecto.2011.12.029.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
107. Ding, Zh.-Y.; Yang, Y.-Q.; Yao, Zh.-X.; Zhang, G.-H. A thin-skinned collisional model for the Taiwan orogeny.
Tectonophysics 2001, 332, 321-331.
108. Mouthereau, F.; Deffontaines, B.; Lacombe, O.; Angelier, J. Variations along the strike of the Taiwan thrust
belt: Basement control on the structural style, wedge geometry, and kinematics. Geol. Soc. Am. Spec. Pap. 2002
358, 31-54.
109. Mouthereau, F.; Lacombe, O.; Deffontaines, B.; Angelier, J.; Brusset, S. Deformation history of southwestern
Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections.
Tectonophysics 2001, 333, 393-322.
110. Lee, C.-I.; Chang, Y.-L.; Coward, M.P. Inversion tectonics of the fold-and-thrust belt, western Taiwan. Geol. Soc.
Am. Spec. Pap. 2002, 358, 13-30.
111. Mouthereau, F.; Lacombe, O. Inversion of the Palaeogene Chinese continental margin and thick-skinned
deformation in the Western Foreland of Taiwan. J. Struct. Geol. 2006, 28, 1977-1993, doi:10.1016/j.jsg.2006.08.007.
112. Brown, D.; Alvarez-Marron, J. ;Schimmel, M.; Wu, Y.-M.; Camanni, G. The structure and kinematics of the
central Taiwan mountain belt derived from geological and seismicity data. Tectonics 2012, 31, TC5013,
doi:10.1029/2012TC003156.
113. Wu, F.T.; Rau, R.-J.; Salzberg, D. Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics 1997,
274, 191-220.
114. Van Avendonk, H.J.A.; McIntosh, K.D.; Huo-Chen, H.; Lavier, L.L.; Okaya, D.A.; Wu, F.T.; Wang, Ch.-Y.; Lee,
Ch.-S.; Liu, Ch.-S. A lithospheric profile across northern Taiwan: from arc-continent collision to extension.
Geoph. J. Intern. 2016, 204, 331-346, doi: 10.1093/gji/ggv468.
115. Yui, T.-F.; Chu, H.-T. ‘Overturned’ marble layers: evidence for upward extrusion of the Backbone Range of
Taiwan. EPSL 2000, 179, 351-361.
116. Carena, S.; Suppe, J.; Kao, H. Active detachment of Taiwan illuminated by small earthquakes and its control of
first-order topography. Geology 2002, 30, 935-938.
117. Camanni, G.; Alverz-Marron, J.; Brown, D.; Ayala, C.; Wu, Y.-M.; Hsieh, H.-H. The deep structure of
south-central Taiwan illuminated by seismic tomography and earthquake hypocenter data. Tectonophysics 2016,
679, 235-245, doi.org/10.1016/j.tecto.2015.09.016.
118. Kuo-Chen, H.; Wu, F.T.; Roecker, S.W. Three-dimensional P velocity structures of the lithosphere beneath
Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. 2012, 117, B06306,
doi:10.1029/2011JB009108.
119. Suppe, J. The active Taiwan mountain belt. In The Anatomy of Mountain Range;s Schaer, J.P.; Rodgers, J.; Eds.
Princeton University Press, Princeton, N.J., USA, 1987, pp. 277-293.
120. Lacombe O.: Mouthereau F. Basement-involved shortening and deep detachment tectonics in forelands of
orogens : insights from recent collision belts (Taiwan, western Alps, Pyrenees). Tectonics 2002, 21, 4, 1030,
10.1029/2001TC901018
121. Ching, K.E.; Hsieh, M.-L.; Johnson, K.M.; Chen, K.-H.; Rau, R.-J.; Yang, M. Modern vertical deformation rates
and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008. J.
Geophys. Res. 2011, 116, B08406, doi:10.1029/2011JB008242.
122. DeMets, C.; Gordon, R.G.; Argus, D.F.; Stein, S. Current plate motions. Geoph. J. Intern. 1990, 101, 425-478.
123. Mescua, J.F.; Giambiagi, L.; Barrionuevo, M.; Tassara, A.; Mardonez, D.; Mazzitelli, M.; Lossada, A. Basement
composition and basin geometry controls on upper-crustal deformation in the Southern Andes (30 – 36°S). Geol.
Mag. 2016, 153, 945-961, doi:10.1017/S0016756816000364.
124. Cristallini, E.O.; Ramos, V.A. Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt:
crustal evolution of the High Andes of San Juan, Argentina (32°SL). Tectonophysics 2000, 317, 205-235.
125. Ammirati, J.-B.; Alvarado, P. ; Beck, S. A lithospheric velocity model for the flat slab region of Argentina from
joint inversion of Rayleigh wave phase velocity dispersion and teleseimic receiver functions. Geoph. J, Int. 2015,
202, 224-241, doi: 10.1093/gji/ggv140.
126. Bellahsen, N.; Sebrier, M.; Siame, L. Crustal shortening at the Sierra Pie de Palo (Sierras Pampeanas,
Argentina): near-surface basement folding and thrusting. Geol. Mag. 2016, 153, 992-1012,
doi:10.1017/S0016756816000467.
127. SERNAGEOMIN. Mapa Geológico de Chile: versión digital. Serv. Nac. de Geol. y Min.: Publ. Geol. Digital, No.
4 (CD-ROM, versión1.0, 2003), Santiago, Chile, 2003.
128. Smalley, R.J.; Pujol, J.; Regnier, M.; Chiu, J.-M.; Chatelain, J.L.; Isacks, B.L.; Araujo, M.; Puebla, N. Basement
seismicity beneath the Andean Precordillera thin-skinned thrust belt and implications for crustal and
lithospheric behavior. Tectonics 1993, 12, 63-76.
129. Regnier, M.; Chatelain, J.L.; Smalley, R.; Chiu, J.-M.; Isacks, B.L.; Araujo, M. Seismotectonics of Sierra Pie de
Palo, a basement block uplift in the Andean foreland of Argentina. Bull. Seismol. Soc. Am. 1992, 82, 2549-2571.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
130. Siame, L.L.; Sébrier, M.; Bellier, O.; Bourlès, D.; Costa, C. Ahumada, E.A.; Gierdine, C.E.; Cisneros, H. Active
basement uplift of Sierra Pie de Palo (Northwestern Argentina): Rates and inception from 10Be cosmogenic
nuclide concentrations. Tectonics 2015, 34, 1129-1153, doi:10.1002/2014TC003771.
131. Taboada, A.; Rivera, L.A.; Fuenzalida, A.; Cisternas, A.; Philip, H.; Bijwaard, H.; Olaya, J.; Rivera, C.
Geodynamics of the northern Andes: Subductions and intracontinental deformation (Columbia), Tectonics
2000, 19/5, 787-813.
132. Kerr, A.C.; Tarney, J.; Nivia, A.; Marriner, G.F.; Saunders, A.D. The internal structure of oceanic plateaus:
inferences from obducted Cretaceous terranes in western Columbia and the Caribbean. Tectonophysics 1998,
292, 173-188.
133. Forero Suarz, A., 1990. The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in
northwestern South America. J. South Am. Earth Sci. 1990, 3, 141-151.
134. Mora, A.; Parra, M.; Strecker, M.R.; Kammer, A.; Dimaté, C.; Rodríguez, F. Cenozoic Contractional
reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics 2006, 25,
TC2010, doi 10.1029/2005TC001854.
135. Zoback, M.L.; Zoback, M., 2015. Lithosphere Stress and Deformation. In: Treatise on Geophysics, 2nd edition, G.
Schubert, 2015, Vol. 6, pp. 255-270, http://dx.doi.org/10.1016/B978-0-444-53802-4.00115-9.
136. Nemčok, M.; Mora, A.; Cosgrove, J.W. (Eds). Thick-Skin-Dominated Orogens: From Initial Inversion to Full
Accretion. Geol. Soc. Spec. Publ. 2013a, 377, 482 pp.
137. Mora, A.; Parra, M.; Strecker, M.R.; Sobel, E.R.; Hooghiemstra, H.; Torres, V.; Jaramillo, J.V. Climatic forcing of
asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geol. Soc. Am. Bull. 2008, 120, 930-949,
doi: 10.1130/B26186.1.
138. Tesón, E.; Mora, A.; Silva, A.; Namson, J.; Teixell, A.; Castellanos, J.; Sasallas, W.; Julivert, M.; Taylor, M.;
Ibáñez-Mejía, M.; Valencia, V.A. Relationship of Mesozoic graben development, stress, shortening magnitude,
and structural style in the Eastern Cordillera of the Colombian Andes. In Thick-Skin-Dominated Orogens: From
Initial Inversion to Full Accretion. Nemčok, M.; Mora, A.; Cosgrove, J.W.; Eds. Geol. Soc. London Spec. Publ. 2013,
377, 257-283, http://dx.doi.org/10.1144/SP377.10.
139. INGEOMINA. Catalogo de la Red Sismologica Nacional de Colombia, 2009. http://seisan.ingeominas.gov.
co/RSNC/index.php?option=com_wrapper&view= wrapper&Itemid1⁄477 (accessed 11 January, 2011).
140. Nemčok, M.; Mora, A.; Cosgrove, J.W. (Eds). Thick-skin-dominated orogens: from initial inversion to full
accretion: an introduction. In Thick-Skin-Dominated Orogens: From Initial Inversion to Full Accretion; Nemčok, M.;
Mora, A.; Cosgrove, J.W.; Eds. Geol. Soc. Spec. Publ. 2013b, 377, 1-17, http://dx.doi.org/10.1144/SP377.17.
141. Oberhänsli, R.; Bousquet, R.; Engi, M.; Goffé, B.; Gosso, G.; Handy, M.; Höck, V.; Keller, F.; Lardeaux, J.-M.;
Polino, R.; Rossi, Ph.; Schuster, R.; Schwartz, S.; Spalla, I. Metamorphic Structure of the Alps (Map 1:1,000,000).
Paris: Commission for the Geological Map of the World: Paris, SGMW, 2004.
142. Pfiffner, O.A. Geology of the Alps. WILEY Blackwell: Chichester, UK, 2014, 376 pp.
143. Pfiffner, O.A.; Heitzmann, P. Geologic interpretation of the seismic profiles of the Central Traverse (lines C1,
C2, C3-north). In Deep Structure of the Swiss Alps: Results of NRP 20; Pfiffner, O.A.; Lehner, P.; Heitzmann, P.;
Müller, St.; Steck, A.; Eds. Birkhäuser, Basel, Switzerland, 1997, pp. 115-122.
144. Schumacher, M.E., 1997. Interpretation of the seismic profiles through the Southern Alps (lines S1 – S7,
C3-south), In Deep Structure of the Swiss Alps: Results of NRP 20; Pfiffner, O.A.; Lehner, P.; Heitzmann, P.;
Müller, St.; Steck, A.; Eds. Birkhäuser, Basel, Switzerland, 1997, pp. 101-114.
145. Waldhauser, F.; Lippitsch, R.; Kissling, E.; Ansorge, J. High-resolution teleseismic tomography of
upper-mantle structure using an a priori three-dimensional crustal model. Geoph. J. Intern. 2002, 150, 403-414.
146. Diel, T.; Husen, S.;Kissling, E.; Deichmann, N. High-resolution 3-D P-wave model of the Alpine crust. Geoph. J.
Intern. 2009, 179, 1133-1147.
147. Wagner, M.; Kissling, E.; Husen, S. Combining controlled-source seismology and local earthquake
tomography to derive a 3-D crustal model of the western Alpine region. Geoph. J. Intern. 2012, 191, 789-802.
148. Pfiffner, O.A.; Deichmann, N. Seismotektonik der Zentralschweiz. Nagra Arbeitsbericht 2014 NAB 14-26, Nagra,
Wettingen, Schweiz,
http://www.nagra.ch/en/cat/publikationen/arbeitsberichte-nabs/nabs-2014-1-80/downloadcentre.
149. Schlatter, A. Kinematische Gesamt-Ausgleichung der Schweizer Landesnivellementlinien 2013 und
Detail-Darstellung der rezenten vertikalen Oberflächenbewegungen in der Zentralschweiz. Nagra
Arbeitsbericht 2014 NAB 14-38. Nagra, Wettingen, Schweiz.
http://www.nagra.ch/en/cat/publikationen/arbeitsberichte-nabs/nabs-2014-1-80/downloadcentre.
150. Arca, S.; Beretta, G.P. Prima sintesi geodetico-geologica si movimenti verticali del suolo nell'Italia
Settentrionale (1897 – 1957). Bolletino di geodesia e scienze affini 1985, N. 2, Anno XLIV, 125-156.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
151. Brockmann, E.; Ineichen, D.; Marti, U.; Schaer, S.; Schlatter, A.; Villiger, A. Determination of tectonic
movements in the Swiss Alp using GNSS and Leveling. InKenyon et al. (eds.) Geodesy for Planet Earth, Kenyon
et al., International Association of Geodesy Symposia 136, 2012, DOI: 10.1007/978-3-642-20338-1_85.
152. Vernon, A.J.; van der Beek, P.A.; Sinclair, H.D.; Rahn, M.K. Increase in late Neogene denudation of the
European Alps confirmed by analysis of a fission-track thermochronology database. EPSL 2008, 270, 316-329.
153. Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, K.F.; Giardini, D.; Michael, A.J. Stress field variations in the
Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. J. Geophys. Res.
2004, 109, B01402, doi:10.1029/2003JB002550.
154. Giamboni, M.; Ustaszewski, K.; Schmid, S.M.; Schumacher, M.E.; Wetzel, A. Plio-Pleistocene transpressional
reactivation of Palaeozoic and Palaeogene structures in the Rhine-Bresse transform zone (northern
Switzerland and eastern France). Int. J. Earth Sci. (Geol. Rdsch.) 2004, 93, 207-223.
155. Schönborn, G. Alpine tectonics and kinematic models of the central Southern Alps. Mem. Sci. geol. (Mem. Ist.
Geol. Min. Univ. Padova) 1992, XLIV, 229-393.
156. Castellarin, A.; Cantelli, L.. Neo-Alpine evolution of the Southern Eastern Alps. J. Geodyn. 2000, 30, 251-274.
157. Singer, J.; Diehl, T.; Husen, S.; Kissling, E.; Duretz, T. Alpine lithosphere slab rollback causing lower crustal
seismicity in northern foreland. EARTH PLANET. SCI. LETT. 2014, 397, 42-56,
http://dx.doi.org/10.1016/j.epsl.2014.04.002.
158. Krabbendam, M.; Strachan, R.A.; Leslie, A.G.; Goodenough, K.M.; Bonsor, H.C. The internal structure of the
Moine Nappe Complex and the stratigraphy of the Morar Group in the Fannichs-Beinn Dearg area, NW
Highlands. Scott. J. Geol. 2011, 47, 1-20, doi: 10.1144/0036-927/01-419.
159. Strachan, R.A.; Smith, M.; Harris, A.L.; Fettes, D.J., 2002. The Northern Highland and Grampian terranes. In
The Geology of Scotland; Trewin, N.H.; (Ed.), The Geological Society: London, UK, 2002, pp. 81-147.
160. Brewer, J.A.; Smythe, D.K. MOIST and the continuity of crustal reflector geometry along the
Caledonian-Appalachian orogeny. J. Geol. Soc. 1984, 141, 105-120, doi: 10.1144/gsjgs.141.1.0105.
161. Milnes, A.G.; Wennberg, O.P.; Skȧr, Ø.; Koestler, A.G., 1997. Contraction, extension and timing in the South
Norwegian Caledonides: the Sognefjord transect. In Orogeny Through Time, Burg, J.-P.; Ford, M.; Eds. Geol. Soc.
London Spec. Publ., 121, pp. 123-148.
162. Hossack, J.R.; Garton, M.R.; Nickelsen, R.P. The geological section from the foreland up to Jotun thrust sheet
in the Valdres area, south Norway. In The Caledonide Orogen – Scandinavia and Related Areas, Gee, D.G.; Sturt,
B.A.; Eds. John Wiley & Sons Ltd: Chichester, UK, 1985, pp. 443-456.
163. Fossen, H.; Gabrielsen, R.H.; Faleide, J.I.; Hurich, C.A. Crustal stretching in the Scandinavian Caledonides as
revealed by deep seismic data. Geology 2014, 42/9, 791-794, doi: 10.1130/G35842.1.
164. Klemperer, S.L.; Hurich, C.A. Lithosphere structure of the North Sea from deep seismic reflection profiling. In
Tectonic Evolution of the North sea Rifts, Blundell, D.J.; Gibbs, A.D.; Eds. Oxford University Press: Oxford, U.K.,
1990, pp. 37-63.
165. Fossen, H.; Dunlap, W.J. Timing and kinematics of Caledonian thrusting and extensional collapse, southern
Norway: evidence from 40Ar/39Ar thermochronology. J. Struct. Geol. 1998, 20/6, 765-781.
166. Matte, P. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica
microplate: a review. Terra Nova 2000, 13, 122-128.
167. von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic basements - Their place in
the European Paleozoic framework. Geol. Soc. of Am. Bull. 2012, 125/1-2, 89-108, doi:10.1130/B30654.1.
168. Franke, W. Tectonostratigraphic units in the Variscan belt of central Europe. Geol. Soc. Am. Spec. Paper 1989,
230, 67-90, doi: 10.1130/SPE230-p67.
169. Schaltegger, U. U-Pb geochronology o the Southern Black Forest Batholith (Central Variscan Belt): timing of
exhumation and granite emplacement. Int. J. Earth Sci. 2000, 88, 814-828.
170. Schuster, R.; Stüwe, K., 2008. Permian metamorphic event in the Alps. Geology 2008, 36/8, 603-606, doi:
10.1130/G24703A.1.
171. Matte, P. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 1991,
196, 309-337.
172. Mengel, K. Evidence from Xenoliths for the composition of the lithosphere. In A continent revealed – The
European Geotraverse. Blundell, D.; Freeman, R.; Mueller, St.; Eds. Cambridge University Press: Cambridge, UK,
1992, pp. 91-102.
173. Franke, W., 1992. Phanerozoic structures and events in central Europe. In The European Geotraverse: A continent
revealed, Blundell, D.; Freeman, R.; Mueller, St., Eds.; Cambridge University Press, Cambridge, U.K., pp.
164-180.
174. Blundell, D.; Freeman, R.; Mueller, St. (Eds) A continent revealed – The European Geotraverse. University Press,
Cambridge 1992.
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2017 doi:10.20944/preprints201707.0020.v2
175. Franke, W.; Matte, P.; Tait, J. Variscan Orogeny. In Encyclopedia of Geology, Selley, R.; Cocks, L.R..M.; Plimer,
I.R., Eds.; Vol. 2, Elsevier Academic Press, 2005, pp. 75-85.
176. Korsch, R.J.; Goleby, B.R.; Leven, J.H.; Drummond, B.J. Crustal architecture of central Australia based on deep
seismic reflection profiling. Tectonophysics 1998, 288, 57-69.
177. Collins, W.J.; Offler, R.; Farrell, T.R.; Landenberger, B. A revised Late Palaeozoic-Early Mesozoic tectonic
history for the southern New England Fold Belt. In New England Orogen, eastern Australia, NEO ’93
CONFERENCE, 2-4 February 1993, University of New England, Armidale, Australia, Flood, P.G.; Aitchison,
J.C., Eds. pp. 69-84.
178. Korsch, R.J.; Totterdell, J.M.; Fomin, T.; Nicoll, M.G. Contractional structures and deformational events in the
Bowen, Gunnedah and Surat Basins, eastern Australia. Austr. J. Earth Sci. 2009, 56, 477-499.

 

 

311. Stockmal, G.S.; Beaumont, C.; Nguyen, M.; Lee, B. Mechanics of thin-skinned fold-and-thrust belts: Insights
from numerical models. Geol. Soc. Am. Spec. Pap. 2007, 433, 63-98, doi: 10.1130/2007.2433(04).
312. Schreurs, G., Buiter, S.J.H. et al., 2016. Benchmarking Analogue Models of Brittle Thrust Wedges. J. Struct. Geol.
2016, 92, 116-139, doi: 10.1016/j.jsg.2016.03.005.
313. Panien, M.; Schreurs, G.; Pfiffner, O.A. Sandbox experiments on basin inversion: testing the influence of basin
orientation and basin fill. J. Struct.Geol. 2005, 27, 433-445, doi: 10.1016/j.jsg.2004.11.001.
314. Buiter, S.J.H. A review of brittle compressional wedge models. Tectonophysics 2012, 530-531, 1-17.
doi:10.1016/j.tecto.2011.12.018.
315. Buiter, S.J.H.; Schreurs, G.; et al. Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol. 2016,
92, 140-177, doi: 10.1016/j.jsg.2016.03.003.
316. Ruh, J.B.; Kaus, B.J.P.; Burg, J.-P. Numerical investigation of deformation mechanics in fold-and-thrust belts:
Influence of rheology of single and multiple décollements. Tectonics 2012, 31, TC3005, doi:
10.1029/2011TC003047.
317. Suppe, J.; Medwedeff, D.A. Geometry and kinematics of fault-propagation folding. Ecl. geol. Helv. 1990, 83,
409-454.
318. Beaumont, C.; Fullsack, P.; Hamilton, J. Erosional control of active compressional orogens. In Thrust tectonics,
McClay, K.R., Ed.; Chapman and Hall: London, UK, 1992; pp 1-18.
319. Ellis, S.; Wissing, S.; Pfiffner, O.A. Strain localization as a key to reconciling experimentally derived flow-data
with dynamic models of continental collision. Internat. J. Earth Sci. (Geol. Rundsch.) 2001, 90, 168-180, doi:
10.1007/s005310000151.